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Abstract

The supplementary material contains: (I) most impor-
tantly, a video that shows detailed and comprehensive re-
sults, as well as a PDF which includes (II) more experimen-
tal results in terms of PR curves, sample RGB-D detection
results, and comparison to the baselines, (Ill) a few exam-
ple real-world applications of large-scale semantic parsing,
(IV) implementation details of CRF to enforce contextual
consistency, (V) more details on detecting space dividers
for disjoint space parsing, and finally (VI) implementation
details of locating the entrance to disjoint spaces for proper
normalization in the canonical coordinate system.

1. Additional Results

In this section, we present additional results on the se-
mantic element parsing. We first provide precision-recall
curves for each semantic class. We also include more qual-
itative results on the comparison to RGB-D based methods,
as explained in Sec. 5.4 in the main paper.

1.1. Precision-Recall Curves for Element Detection

Fig. (1| shows the precision-recall curves for each seman-
tic class. The curves suggest the importance of the global
features in all semantic classes. The precision-recall curves,
as well as the class-specific average precision values pre-
sented in the main paper, suggest that our method performs
very well in the case of structural elements, however the
performance for furniture is limited. We attribute these re-
sults to the generalization of structural elements among dif-
ferent buildings, which does not apply to the same extent on
furniture.

1.2. Additional Results on comparison with RGB-D
based methods

In this section, we present additional results on our RGB-
D experiments. In Fig[2] we qualitatively show the RGB-D

segmentation results of [[L], as well as the projected results
of our algorithm on the same images. We also provide the
input images as reference. As the resulting images suggest,
our algorithm significantly outperforms the baseline. How-
ever, the results might be due to the train-test mismatch. It
should be noted that our 3D detectors are trained on our
training set whereas the RGB-D segmentation algorithm is
trained by using NYU-Depth-V2.

2. Applications

Understanding the semantics of large-scale indoor space
point clouds can give rise to numerous applications without
the immediate need for 3D reconstruction. We will present
here three examples that showcase the power of point cloud
semantics: automatic extraction of space statistics, auto-
matic coarse calculation of relative natural light score and
automatic space manipulation. For detailed results, please
see the provided video.

2.1. Space Statistics

Knowing space statistics of an existing space is the start-
ing point for refurbishment, energy performance analysis,
interior design, etc. Acquiring such information is currently
a time consuming task since it requires manually extracting
it from the point cloud. It is however possible to automate
this process and automatically generate all necessary mea-
surements. Such an application can benefit not only the con-
struction industry but also the typical end-user.

We use our point-level results and compute a variety of
space statistics, such as volume, area, size and width of se-
mantic elements, per floorplan or disjoint space. To see an
example of the computed statistics for a sample building
area of our dataset, please see the provided video.

2.2. Estimation of Natural Illumination Model

Auvailability of detailed semantics of an indoor space can
empower several applications. One such example is the ap-
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Figure 1. Additional Results for 3D element detection. Class specific PR curves for each semantic class.

proximate calculation of the relative gradient of natural light
per space based on the proximity to a window (Fig. [3). To
this end we compute the distance of each point from the
closest window, taking into account occlusions due to walls
and doors. This results to a coarse natural light illumination
model.

2.3. Space Manipulation

One more possible application is space manipulation. By
knowing the semantics, one can visualize how two or more
adjacent spaces would look like if they were connected by
removing the in-between walls (Fig. E] b), or further how
they would be perceived if they were empty, by removing
the furniture (Fig. |4|c,d). This finds numerous applications
in interior design, graphics, etc. For an example, please see
the provided video.

3. Additional Details
3.1. Parsing Point Cloud into Disjoint Spaces

In this section we will provide details on detecting space
dividers and finding the location of the entrance to a disjoint
space.

3.1.1 Detecting space dividers

Bank of filters: We detect space dividers by convolving the
histogram of density of points for each axis with a custom

designed filter of a peak-gap-peak shape. However we have
no prior knowledge of the width of space dividers in the
building, neither do we know if their size remains constant
throughout the floorplan. As a result we cannot define a sin-
gle filter with set dimensions (the size of the gap between
the two peaks). We thus create a bank of filters to accommo-
date all possible space divider widths. In specific, we form
a bank of filters with §{2, 6, 8, ..., 80}, ¢{2, 4,6, ..., 10} and
w{10, 15, 20, 80}, resulting to 754 differently shaped filters
(see Fig. 2 right (b) in main paper).

Convolution: We convolve the histogram of density of
points with all 754 filters. The output of this operation is
a set of continuous signals that form peaks in the location
of the gap between two closely located peaks in the his-
togram. The filter that fits the peak-gap-peak formation in
the histogram the closest will output the maximum possi-
ble value among all filters. Since we have a number of
space dividers per signal each of which might be best rep-
resented by different filters, we perform max pooling over
d,c: C(a) = maz(C(a)) to consolidate the results of all
convolutions, as the right J, ¢ scale parameters are expected
to give rise to the strongest peaks (see Fig. 2 right (c) in
main paper).

Space Dividers: We detect the final space divider locations
by applying non-maximum suppression on C, followed by
bimodal clustering. Filters with different parameters close
to the one that gives the maximum peak fire as well but in



Figure 2. Additional Results. First column is the RGB image, second column is the depth image, 3rd column is the segmentation results
of [T]] and the last column is our projected results. It should be noted that [1]] and our method are using different set of classes; hence, we
show the segmentation results for visualization purposes only. In our quantitative evaluation in the main paper, we only use the intersecting

classes.

slightly different locations, next to that of the strongest re-
sponse. To select the maximum one, we use non-maximum
suppression. The output of this step provides us with can-
didate locations for space dividers. However some of these
candidates are a by-product of the moving nature of con-
volution and hence do not correspond to space dividers.
Such peaks are due to the distribution of clutter or to a non-
building element that might get represented in the histogram
in a similar to a wall way but with smaller intensity. To filter
them out, we use bimodal clustering. Due to the consider-
ably lower magnitude of such peaks, they can be easily dis-
tinguished from correct peaks by maximizing the inter-class
variance between the two groups of peaks without the need
to manually set a threshold (we used Otsu’s method [3] for
this purpose). The peaks surviving this step are our final
space divider locations (see Fig. 2 right (d) in main paper).

After over-segmenting our point cloud, we perform a se-
ries of merging operations to connect over-segments that
belong to the same space. As a brief overview, we itera-

tively examine a pair of neighboring over-segments for the
existence of a space divider in a localized area around their
common side.

Merging Over-segments: We generate the histogram of
density of points in this area along the axis that is orthogonal
to the common side. As in the previous step, we convolve
the histogram with the bank of 754 filters and perform the
same operations to identify the existence or not of a candi-
date space divider in this area. If it results to a peak, then
this pair of neighboring over-segments is not connected, i.e.
the over-segments belong to separate spaces. Otherwise,
they belong to the same space and no space divider exists
between them.

Locating Doors: In case that the two segments belong to
separate spaces, it is possible that a connection element
exists between them (door) that allows mobility from one
space to the other. If we chose to normalize the detected
spaces based on their entrance location, we need to coarsely
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Figure 3. An application of large-scale semantic parsing: automatically estimating the natural illumination model of spaces based on the
proximity to windows and placement of walls and doors for reflection reasoning.

identify the potential location of the door of each space
prior to the next step of the framework (element parsing).
We identify it during the merging operations using a simple
detector, by once again utilizing the generated histogram
of density of points in the connecting area of the over-
segments. In the core of this detector lies the fact that a
door is depicted in the point cloud as a concentrated group
of points in between two wall surfaces. This means that if a
door exists between two disjoint over-segments, there will
be a number of points in between the two wall surfaces.
We take advantage of this property and compute the mode
of the density of points in a small area near the fired peak
(space divider). Because we are only using a very small
area around the peak and we are only interested in the ex-
tends of the rooms’ sides that are common, we expect the
mode to be zero if no connecting element exists, otherwise
we identify a connection.

3.2. Parsing Disjoint Spaces into Elements

In this section, we provide more details on how do we
define and solve the graphical model as well as give addi-
tional results on element parsing.

3.2.1 Details on Graphical Models

As we explained in equation (1) of the main paper (see Sec.
4.1), our model follows the log-linear model [2]] and we pre-
dict the final elements as a maximization problem of the
energy function;

arg max Z WolyYy + Z YvYu (weu,ev : (I)u,v) , (D
Y veEY (u,v)€EE

which can be written as an integer program by introducing
auxiliary variables y,, = Yy VYu,v € V as;

arg max Z WolyYy + Z You (weu,ev : (I)u,v)
v veY (u,v)e€

Sty < yu Yu €V, Vv € N(u)

s‘t'yu + Yo S Yuv +1 VU,U € E.

This maximization is performed using an off-the-shelf
LP/MIP solver and the weight vectors w are learned us-
ing Structured SVM [4]. In order to solve the optimiza-
tion problem, we are using the GNU Linear Programming
Toolkit.

In order to learn the weight vectors w, we are using
the Structured-SVM (S-SVM) algorithm, which is based on
cutting plane method. In a nutshell, it minimizes the loss
function Y A(y, §) such that A is a structured loss between
the ground truth labelling g and the estimation y. We are us-
ing the Hamming loss as ) . 1[g; = y;]. S-SVM optimizes
this loss by merely requiring;

2

argimax Z Woly Yoy + Z You (weu,ev : (I)u,v) + A(y’ Zj)

v veY (u,v)€E

5t Yuy < Yu Yu €V, Vv € N(u)

$tYy + Yy SYuo +1 Yu,v€E.
Thanks to the specific structure of Hamming loss, this(%g
equivalent to;

arg max Z wolyyy + L[Yy = Yo+
v veV

Z You (weu,ey . (I)u,'u) + Il[y':)u = yvu]
(u,v)EE
$tYur < yu Yu €V, Vo € N(u)
Sty + Yy S Yuw +1 VYu,veé.

This loss augmented optimization problem can also be
solved by using the same LP/MIP solver.
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